Схемы нахождения приближенного решения для задач теории расписаний

Скиндерев Сергей Александрович¹

студент

Московский физико-технический институт, Москва, Россия E-mail: sergeant.mipt@mail.ru

Введение

Рассматривается NP-трудная в сильном смысле задача $R \mid prec, r_j \mid L_{\max}$. Имеется n требований $j \in N = \{1, ..., n\}$, и m приборов $M_1, ..., M_m$. Для каждого требования $j \in N$ даны момент освобождения r_j , длительности обслуживания $0 \le p_{ji} \le \infty$ (длительность обслуживания требования j на приборе i) и директивный срок d_j . Заданы отношения предшествования между требованиями в виде ацикличного ориентированного графа G. Каждое требование может быть обслужено только одним прибором, а каждый прибор не может одновременно обслуживать более одного требования. Необходимо найти допустимое расписание π , которое минимизирует максимальное временное смещение $L_{\max}(\pi) = \max_{j \in N} \{C_j(\pi) - d_j\}$, где $C_j(\pi)$ — время завершения обслуживания требования j в расписании π .

Идея подхода состоит в построении по исходному примеру A, такого примера B (с тем же числом требований), с минимальной оценкой абсолютной погрешности, т.е.

$$0 \leq L_{\max}^{A}(\pi^{B}) - L_{\max}^{A}(\pi^{A}) \leq \rho_{d}(A,B) + \rho_{r}(A,B) + \rho_{p}(A,B) \text{, где}$$

$$\rho_{d}(A,B) = \max_{j \in N} \left\{ d_{j}^{A} - d_{j}^{B} \right\} - \min_{j \in N} \left\{ d_{j}^{A} - d_{j}^{B} \right\},$$

$$\rho_{r}(A,B) = \max_{j \in N} \left\{ r_{j}^{A} - r_{j}^{B} \right\} - \min_{j \in N} \left\{ r_{j}^{A} - r_{j}^{B} \right\},$$

$$\rho_{d}(A,B) = \sum_{j \in N} \left\{ \max_{i \in M} \left\{ (p_{ji}^{A} - p_{ji}^{B}), 0 \right\} - \min_{i \in M} \left\{ (p_{ji}^{A} - p_{ji}^{B}), 0 \right\},$$

 π^{A} , π^{B} – оптимальные расписания для примеров A и B соответственно.

Оценка абсолютной погрешности

Теорема 1. Пусть $A = \left\{G, \left(r_{j}^{A}, p_{ji}^{A}, d_{j}^{A}\right) | j \in N, i \in M\right\}$ и $B = \left\{G, \left(r_{j}^{B}, p_{ji}^{B}, d_{j}^{B}\right) | j \in N, i \in M\right\}$ (с одинаковыми графами предшествования G) — два примера, тогда $0 \le L_{\max}^{A}(\pi^{B}) - L_{\max}^{A}(\pi^{A}) \le \rho(A, B)$.

Идея подхода состоит из двух шагов. На первом шаге у исходного примера $A = \left\{G, \left(r_j^A, p_{ji}^A, d_j^A\right) | j \in N, i \in M\right\}$ так изменяем параметры r_j, p_{ji} и $d_j, \forall j \in N, \forall i \in M$, что получаем пример $B = \left\{G, \left(r_j^B, p_{ji}^B, d_j^B\right) | j \in N, i \in M\right\}$, принадлежащий некоторому полиномиально разрешимому классу исходной задачи, который минимизирует «расстояние» $\rho(A, B)$. На втором шаге мы находим оптимальное расписание для

¹ Автор выражает признательность научному руководителю, к.ф.-м.н. Лазареву А.А. за помощь в подготовке доклада.

примера B . Согласно теореме 1, подставив расписание π^B в пример A, получим гарантированную погрешность приближенного решения $0 \le L_{\max}^A(\pi^B) - L_{\max}^A(\pi^A) \le \rho(A,B)$.

Схемы нахождения приближенного решения

В [1] были приведены схемы нахождения приближенного решения для задачи $1 \mid r_i \mid L_{\max}$. Полиномиально разрешимые случаи можно найти в [2].

Пусть необходимо найти оптимальное расписание для примера A задачи $\alpha \mid \beta \mid L_{\max}$ и известно, что соответствующая задача $\alpha \mid \beta \mid C_{\max}$ полиномиально разрешима. Тогда $0 \leq L_{\max}^A(\pi^B) - L_{\max}^A(\pi^A) \leq \rho(A,B) = \max_{j \in N} d_j^A - \min_{j \in N} d_j^A$.

Далее, пусть нужно найти оптимальное расписание для примера A задачи $\alpha \mid \beta \mid L_{\max}$ и известно, что соответствующая задача $\alpha \mid \beta, p_j = p \mid L_{\max}$ полиномиально разрешима. Тогда нужно решить оптимизационную задачу $\rho(A,B) = \sum_j \left| p_j - p \right| \to \min_p.$ Решение данной задачи $p^* = p_{\lfloor \frac{n+1}{2} \rfloor}$ (если $p_1 \leq ... \leq p_n$). В итоге получаем $L_{\max}^A(\pi^B) - L_{\max}^A(\pi^A) \leq \sum_{j \in N} \left| p_j - p_{\lfloor \frac{n+1}{2} \rfloor} \right|.$ Если вместо ограничения $p_j = p$, дано $p_j = 1, \forall j \in N$, тогда абсолютная погрешность целевой функции удовлетворяет условию $L_{\max}^A(\pi^B) - L_{\max}^A(\pi^A) \leq \sum_{j \in N} \left| p_j - p_{\lfloor \frac{n+1}{2} \rfloor} \right| + 2p_{\lfloor \frac{n+1}{2} \rfloor}.$

Пусть исходная задача $R \mid \beta \mid L_{\max}$ или $Q \mid \beta \mid L_{\max}$, тогда для примера A мы рассматриваем соответствующий пример B задачи $P \mid \beta \mid L_{\max}$. Необходимо решить следующую задачу $\sum_{j \in N} \left(\max_{i \in M} \left\{ \left(p_{ji}^A - p_j^B \right), 0 \right\} - \min_{i \in M} \left\{ \left(p_{ji}^A - p_j^B \right), 0 \right\} \right) \rightarrow \min_{p_j^B}$. Решением данной задачи p_j^B является любое значение из отрезка $\left[\min_{i \in M} p_{ji}^A, \max_{i \in M} p_{ji}^A \right], \quad \forall j \in N$ и $L_{\max}^A(\pi^B) - L_{\max}^A(\pi^A) \leq \sum_{i \in N} \left(\max_{i \in M} p_{ji}^A - \min_{i \in M} p_{ji}^A \right).$

Литература

- 1. Лазарев А.А., Садыков Р.Р., Севастьянов С.В. (2006) Схема приближенного решения задачи $1 \mid r_j \mid L_{\max}$. Дискретный анализ и исследование операций. Январь июнь 2006. Серия 2. Том 13. N1, 57-76.
- 2. http://www.mathematik.uni-osnabrueck.de/research/OR/class (основные результаты по теории расписаний).