Поиск и исследование твердых растворов в системе BiF₃ – TeO₂ Притужалов Владимир Александрович

Аспирант 2-го г.о.

Московский государственный университет им. М.В. Ломоносова, Москва, Россия E-mail: prituzh@inorg.chem.msu.ru

Гетеровалентное легирование трифторидов РЗЭ и Ві является одним из способов получения анионпроводящих твердых растворов. При этом может происходить образование как тисонитоподобных ($La_{1-x}Sr_xF_{3-x}$, $Bi_{1-x}Ba_xF_{3-x}$), так и флюоритоподобных ($Bi_{0.5+x}Na_{0.5-x}F_{2+2x}$) твердых растворов. Высокая подвижность ионов фтора при таком легировании обусловлена наличием в структуре анионных дефектов — вакансий и внедренных анионов. Таким образом, изменяя концентрацию и заряд допирующего катиона, можно влиять на транспортные свойства твердого электролита. Вполне вероятно, что аналогичные процессы будут иметь место и при замещении M(III) в фазах MF_3 (M = P39, Bi) на M(IV), например Те. При замещении в структуре части фтора на кислород ($0^{2^-} \Rightarrow 2F^-$) также происходит образование примесных анионных вакансий. Поэтому появление в структуре даже небольших количеств кислорода может изменять проводящие характеристики твердых электролитов. В литературе влияние подобного замещения на транспортные характеристики твердых растворов подробно не исследовалось.

Таким образом, целью данной работы является поиск и исследование твердых растворов в системе ${\rm BiF_3}-{\rm TeO_2}.$ Выбор объектов обусловлен возможностью варьировать концентрации ионов кислорода и фтора в достаточно широких пределах. Висмут (III) и теллур (VI) выбраны как катионы, обладающие активной неподеленной парой электронов, также влияющей на проводящие свойства твердого раствора.

Образцы в исследуемых системах получали методом твердофазного синтеза. Смеси исходных веществ в виде порошка помещали в платиновые тигли, которые запаивали в вакуумированные кварцевые ампулы. Условия отжига: температура $600\pm10^{\circ}\mathrm{C}$, 3 часа, закаливание ампулы в холодную воду.

Идентификацию фаз осуществляли методом рентгенофазового анализа.

Результаты рентгенофазового анализа показали, что в системе происходит образование флюоритоподобного твердого раствора $Bi_{0.5+x}Te_{0.5-x}O_{1-2x}F_{1.5+3x}.(0.20 < x < 0.43)$. Рентгенограммы образцов были проиндицированны методом гомологии в тетрагональной сингонии. Взаимосвязь с кубическим флюоритом: $a=\sqrt{2}/2a_{\phi люорита}$, $c=a_{\phi люорита}$. С увеличением концентрации Te(VI) параметры субъячейки закономерно уменьшаются от a=4.112(1) Å, c=5.867(2) Å до a=4.107(1) Å, c=5.830(4) Å, что связано с различием ионных радиусов теллура и висмута. При анализе рентгенограмм было выявлено, что в некоторых образцах присутствовала фаза оксофторида висмута β - BiO_yF_{3-2y} . Вероятно, при синтезе, за счет процесса пирогидролиза, происходит небольшое изменение состава образцов. С позиций трехкомпонентной фазовой диаграммы системы $BiOF - BiF_3 - TeO_2$ это проявляется в смещении синтезированных образцов со стороны BiF_3 - TeO_2 в центр треугольника $BiOF - BiF_3 - TeO_2$.

Полученные данные позволили уточнить триангуляцию изотермического сечения при 600° С фазовой диаграммы системы $BiOF - BiF_3 - TeO_2$.