Новый способ получения кремнийорганических соединений из кремнезема Малкова Алена Николаевна¹, Лермонтов Сергей Андреевич²

¹аспирант, ²д.х.н., заведующий лабораторией органического синтеза Институт физиологически активных веществ Российской академии наук, Черноголовка, Россия

E-mail: malkova@ipac.ac.ru, lermon@ipac.ac.ru

Несмотря на повсеместную распространенность и доступность кремнезема, его применение в качестве источника кремния затруднено. Это объясняется крайне высокой химической стабильностью полимера $(SiO_2)_n$, разрушить который удается только в специфических условиях.

Мы разработали новый способ растворения кремнеземсодержащего сырья в безводном спиртовом растворе фтористого водорода при комнатной температуре. Он заключается в образовании стабильного комплекса $SiF_4*nMeOH$ непосредственно из SiO_2 и безводного спиртового раствора HF, генерируемого *in situ* из промышленно доступной окиси перфторпропилена:

2 MeOH&F
$$_3$$
 CF CF $_2$ 2 HF&F $_3$ CF COOM e OM e SiO $_2$ + 4 HF $\frac{\text{MeOH}}{_{}^{}$ SiF $_4$ * n MeOH

При добавлении лигандообразующего агента спирт вытесняется из координационной сферы SiF_4 и образуются комплексы SiF_4*L_2 :

$$SiF_4 * n MeOH \xrightarrow{L_2} SiF_4 * L_2$$

 $L = \phi$ енантролин, пиридин, 2,2'- и 4,4'-дипиридил, диметилсуль ϕ оксид

Строение полученных соединений определено методами ¹H- и ¹⁹F-ЯМР спектроскопии, их состав подтвержден элементным анализом. Комплексы представляют собой кристаллические вещества, растворимые в обычных органических растворителях.

Мы изучили ряд свойств полученных нами комплексов кремния. Так, из спиртового комплекса $SiF_4*nMeOH$, а также из комплексов SiF_4*L_2 можно получить газообразный SiF_4 при реакции с H_2SO_4 . Достаточно легко протекает реакция обмена лигандов, а при гидролизе SiF_4*L_2 образуется SiO_2 . Кроме того, из кремнезема, триэтаноламина и полученных нами комплексов легко может быть получен труднодоступный ранее 1-фторсилатран (выход до 95 %):

$$SiF_4*L_2+4 TEA+3 SiO_2$$
O
 SiO_1
O
 O_1
O
 O_2

TEA - триэтаноламин

Необходимо отметить, что важной особенностью нашей работы является возможность использования самых разнообразных источников кремнезема (силикагеля, речного песка, алюмосиликатов). Кроме того, в качестве сырья может применяться и такой серьезный экологический загрязнитель, как рисовая шелуха (РШ).