Кинетический механизм рекомбинантной формиатдегидрогеназы из Arabidopsis thaliana, экспрессированной в клетках E.coli

Войнова Н.С.1, Тишков В.И.1,2

студент 4 курса

 1 Химический факультет МГУ им.М.В.Ломоносова, 119992 Москва 2 ООО «Инновации и высокие технологии МГУ», 109559, Москва E-mail: vojnovanatalya@gmail.com

 $Arabidopsis\ thaliana$ обладает наименьшим по размеру геномом среди растений. Определение последовательностей хромосом ряда высших растений показало, что обязательным компонентом всех растений является NAD^+ -зависимая формиатдегидрогеназа (ФДГ, КФ 1.2.1.2.). В силу простоты строения генома наибольшей популярностью пользуется фермент $Arabidopsis\ thaliana$. Белковый состав митохондрий свидетельствует, что ФДГ локализуется именно в них. Этот фермент играет важную роль в ответе на стрессовые воздействия в растениях. Он окисляет образующийся в результате стресса формиат и восстанавливает NAD^+ до NADH.

До настоящего времени никому в мире не удалось экспрессировать $\Phi Д \Gamma$ из растений в клетках E.coli в активной и растворимой форме, и попытки экспрессии заканчивались образованием телец включения. В нашей лаборатории были созданы генно-инженерные конструкции, позволившие получить в клетках E.coli рекомбинантные $\Phi Д \Gamma$ из растений $Arabidopsis\ thaliana$ в активной и растворимой форме. Нами были выделены гомогенные препараты рекомбинантной $\Phi Д \Gamma$ из A.thaliana, и изучен кинетический механизм и термостабильность $\Phi Д \Gamma$.

В данной работе представлены результаты изучения кинетических свойств рекомбинантной Φ ДГ из *A.thaliana*. Кинетический механизм был определен методом стационарной кинетики по начальным скоростям реакции. Для этого анализировались зависимости скорости ферментативной реакции от концентрации одного из субстратов, NAD⁺, при фиксированных концентрациях формиата. Полученные данные в двойных обратных координатах представляли собой набор прямых, пересекающихся в одной точке. Таким образом, ферментативная реакция в случае этого фермента включает образование тройного фермент-субстратного комплекса. Затем были построены вторичные зависимости отсекаемого отрезка и тангенса угла наклона прямых от обратной концентрации формиата. С их помощью были найдены следующие кинетические параметры: максимальная скорость ферментативной реакции V_{max} , константа Михаэлиса по формиату $K_{\rm M}^{\rm F}$ и NAD⁺ $K_{\rm M}^{\rm N}$ и смешанная константа $K_{\rm NF}$.

Также было изучено действие одного из наиболее сильных ингибитора $\Phi Д\Gamma$ – азида. Оказалось, что в данном случае реализуется случай полного конкурентного ингибирования. Найденная константа ингибирования K_i составила $1\cdot 10^{-7}$ M, что согласуется со значением этой константы для бактериальной $\Phi Д\Gamma$.

Работа выполнена в рамках проекта РФФИ 05-04-49073