Секция «Математическая логика, алгебра и теория чисел»

Аксиоматизация доказуемой 1-доказуемости

Научный руководитель – Беклемишев Лев Дмитриевич

Колмаков Евгений Александрович

Acпирант

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра математической логики и теории алгоритмов, Москва, Россия

E-mail: kolmakov-ea@yandex.ru

Понятие 1-доказуемости является естественным обобщением стандартного понятия доказуемости в перечислимой арифметической теории. Формула φ называется 1-доказуемой в теории S, если φ доказуема в теории S, расширенной множеством всех истинных арифметических Π_1 -предложений в качестве новых аксиом. Обозначим через $[1]_S \varphi$ арифметическую формулу, выражающую отношение " φ 1-доказуема в S".

В данной работе изучается понятие доказуемой 1-доказуемости. Более точно, для произвольных арифметических теорий T и S рассматривается множество

$$C_S(T) = \{ \varphi \mid T \vdash [1]_S \varphi \},\$$

состоящее из арифметических предложений, 1-доказуемость которых в S доказуема в T. Данное множество предложений является перечислимой теорией, расширяющей S. Мы исследуем вопрос о построении явной аксиоматизации теорий вида $C_S(T)$.

Нетрудно показать, что $C_S(T)$ содержит локальную схему рефлексии над S

$$\mathsf{Rfn}(S)$$
: $\square_S \varphi \to \varphi$, φ — предложение,

и для теорий T, содержащих схему индукции, также α -кратную итерацию локальной схемы рефлексии. При этом ординал α определяется так называемым Σ_2^0 -ординалом теории T (см. [1]).

В работе установлено, что теории $C_S(T)$ могут быть аксиоматизированы с помощью итерированных локальных схем рефлексии такого вида. В частности, доказано, что для любого натурального n имеет место дедуктивная эквивалентность теорий

$$C_S(\mathsf{I}\Sigma_n) \equiv \mathsf{Rfn}(S)_{\omega_n},$$

где $\mathsf{I}\Sigma_n$ — фрагмент арифметики Пеано, для которого схема индукции ограничена Σ_n -формулами.

Источники и литература

1) Lev D. Beklemishev, Albert Visser. On the limit existence principles in elementary arithmetic and Σ_n^0 -consequences of theories // Annals of Pure and Applied Logic. 2005. Vol. 136. No. 1-2. P. 56–74.