О ТЕСТАХ ПРИ НЕИСПРАВНОСТЯХ ВИДА «ЗАМЕНЫ ФУНКЦИОНАЛЬНЫХ ЭЛЕМЕНТОВ»

Какимжанова Кыз-Жибек Нуржанкызы

Студент

Факультет ВМК МГУ имени М. В. Ломоносова, Москва, Россия E-mail: z.kakimzhanova@mail.ru

Пусть имеется схема из функциональных элементов Σ , реализующая булеву функцию $f(x_1, \ldots, x_n)$. Под воздействием некоторого источника неисправностей один или несколько элементов схемы Σ могут перейти в неисправное состояние. В результате схема Σ вместо исходной функции $f(x_1, ..., x_n)$ будет реализовывать некоторую булеву функцию $g(x_1, ..., x_n)$, вообще говоря, отличную от f. Все такие функции $q(x_1, \ldots, x_n)$, получающиеся при всевозможных допустимых для рассматриваемой задачи неисправностях элементов схемы Σ , называются функциями неисправности данной схемы. Данная задача впервые была поставлена в работах Чегис И. А. и Яблонского С. В. [2]. Суть предложенного ими тестового подхода состоит в следующем: на входы схемы подаются специальным образом подобранные значения входных переменных $x_1, ..., x_n$, от которых зависит реализуемая булева функция. По получившимся выходным значениям схемы можно судить об исправности схемы или характере неисправности в случае наличия таковой.

Всякое множество T входных наборов схемы Σ называется полным проверяющим тестом для этой схемы, если для любой функции неисправности $g(\tilde{x})$, не равной тождественно $f(\tilde{x})$, в T найдется хотя бы один такой набор $\tilde{\sigma}$, что $f(\tilde{\sigma}) \neq g(\tilde{\sigma})$.

Проверяющие тесты называются единичными если предполагается, что в неисправное состояние может перейти не более одного элемента. Тест считается минимальным, если он имеет наименьшую возможную длину (при заданных условиях).

В работе рассматриваются схемы из функциональных элементов над базисом Жегалкина $\{x\&y,x\oplus y,1,0\}$ и в качестве неисправностей — замещение функционального элемента & функциональным элементом \oplus и наоборот, замещение функционального элемента \oplus функциональным элементом &. Рассматриваются только одиночные неисправности, то есть предполагается, что число неисправных элементов не превосходит 1. Была получена оценка длины минимальных единичных проверяющих тестов для схем, моделирующих полином Жегалкина, при рассматриваемых неисправностях.

Теорема 1. Для всякого натурального n u для всякой булевой функции $f(x_1,\ldots,x_n)$ схема из функциональных элементов в базисе $\{x\&y,x\oplus y,0,1\}$, реализующая f u моделирующая полином Жегалкина функции f, допускает проверяющий тест длины 1 относительно одиночного замещения элемента сложения по модулю 2 конъюнктором или конъюнктора элементом сложения по модулю 2.

Литература

- 1. Ложкин С. А. Лекции по основам кибернетики (учебное пособие для студентов) М.: Издательский отдел ф-та ВМиК МГУ (лицензия ЛР N 05899 от 24.09.2001), 2004 г.
- 2. Чегис И. А., Яблонский С. В. Логические способы контроля работы электрических схем // Труды МИАН. 1958. Т. 51. С. 270—360.