Изменение природных фоновых концентраций по длине реки Луга

Научный руководитель – Задонская Ольга Викторовна

Никерина Надежда Васильевна

Студент (магистр)
Санкт-Петербургский государственный университет, Институт наук о Земле,
Санкт-Петербург, Россия

 $E\text{-}mail:\ nadezhda.nikerina@mail.ru$

Был произведен расчет природных фоновых концентраций БПК $_5$, ХПК $_{\rm Cr}$, соединений азота, минерального фосфора, железа общего, меди, марганца и цинка в пяти створах р. Луга: 1 км выше г. Луга, 1 км выше пгт Толмачево, 0,2 км ниже впадения р. Ифенка, 0,5 км ниже впадения р. Славянка, 6 км ниже впадения р. Падожица.

В качестве исходных данных использованы результаты срочных наблюдений, ведущихся с 1968 по 2018 год (50 лет). Расчет фоновых концентраций производился в соответствии с научно-обоснованными рекомендациями, предложенными ГХИ [1], данный метод также использовался нами для расчета природных фоновых концентраций ряда веществ в р. Нева [2].

Результаты расчетов представлены на рис. 1, превышения ПДК в таблице отмечены жирным шрифтом. ПДК веществ соответствуют объектам рыбохозяйственного значения (ПДКрыбхоз), за исключением ХПК, в случае которого приведено значение ПДК в объектах хозяйственно-питьевого и культурно-бытового водопользования (ПДКхозпит).

Полученные значения ХПК_{Сг} во всех створах превышают ПДКхозпит, концентрации меди и марганца в первом, втором и четвертом створах, а также железа в четвертом створе превышает ПДКрыбхоз. Это объясняется геохимическими особенностями региона. Отсутствие превышения ПДКрыбхоз Fe, Cu и Mn в остальных створах обусловлено, скорее всего, особенностями методики, в соответствии с которой при наличии тренда природная фоновая концентрация рассчитывается как 10й перцентиль выборки срочных наблюдений, что сильно занижает итоговое значение.

Существенных изменений значений природных фоновых концентраций от истока реки к устью не обнаружено.

Источники и литература

- 1) 1. Разработка научно-обоснованных рекомендаций по расчету фоновых концентраций химических веществ в речных водах России с учетом специфики природно-территориальных комплексов, а также антропогенного воздействия // Отчет о НИР по этапу 2 договора № 63-НИР/ФЦП-2016 от 18.04.2016. Рук. Л.И. Минина. ФГБУ «ГХИ», Ростов-на-Дону, 2016, 179 с.
- 2) 2. Никерина Н.В., Задонская О.В. Применение метода динамических фазовых портретов для оценки природных фоновых концентраций в реке Нева // Сборник докладов междунар. науч. конф. «Четвертые виноградовские чтения. Грани гидрологии» Санкт-Петербург, 20–27 марта 2020 года [в печати].

Иллюстрации

	створ 1	створ 2	створ 3	створ 4	створ 5	ПДК
БПК ₅ , мг/дм ³	0,9	0,8	0,7	0,7	0,8	2,1
XПК _{Сл} , мг/дм ³	37	33	34	36	19	15
N (NH ₄ +), мг/дм ³	0,01	0,02	0,01	0,01	0,02	0,4
N (NO ₂ -), мг/дм ³	0,005	0,007	0,005	0,005	0,009	0,2
N (NO ₃ -), мг/дм ³	0,40	0,29	0,50	0,24	0,50	9
P (PO ₄ ³ -), мг/дм ³	0,002	0,016	0,018	0,002	0,010	0,05
Fe общ, мг/дм ³	0,020	0,005	0,025	0,285	0,030	0,1
Си, мкг/дм3	3,7	3,3	1,0	1,6	0,8	1
Mn, мкг/дм ³	44,5	56,0	1,8	23,0	1,9	10

Рис. 1. Значения фоновых концентраций веществ